5min. doba čtení

Umělá inteligence na e-shopu

Umělá inteligence (artificial intelligence − AI) umožňuje zařízením či systémům řešit různé úkoly, aniž by byl zapotřebí neustálý zásah uživatele (člověka). Své výstupy zdokonaluje díky schopnosti učit se z reálných zkušeností.

Martin Krupa Martin Krupa
Co-founder ui42
Umělá inteligence na e-shopu

Umělá inteligence (artificial intelligence − AI) umožňuje zařízením či systémům řešit různé úkoly, aniž by byl zapotřebí neustálý zásah uživatele (člověka). Své výstupy zdokonaluje díky schopnosti učit se z reálných zkušeností.

Co je strojové učení a kde všude se s ním setkáváme?

Pokud jste si dosud mysleli, že se pod zkratkou AI ukrývá dokonalý robot, který na sebe přebírá lidské vlastnosti, pravda je na míle vzdálená. Přestože science fiction přebralo z tohoto odvětví mnoho námětů na filmy a knihy, pravda je zatím mnohem prozaičtější. A zřejmě ještě dlouho zůstane.

Umělá inteligence, či spíše oblast této vědní disciplíny, zvaná machine learning (strojové učení), zjednodušuje a zpříjemňuje náš život v mnoha oblastech již dnes. Právě strojové učení zaznamenalo v uplynulých letech rozvoj díky technice zvané hluboké učení (deep learning).

To se zakládá na neuronových sítích, ke kterým se přidaly další dva významné technologické faktory. Výkonnější počítače a rychlé grafické karty (graphical processor unit − GPU), které jsou cenově stále dostupnější i pro širokou veřejnost.

 

A výsledek?

Zkuste si něco vygooglit pomocí obrázku. Vyhledávač vám ve výsledcích nabídne nejen webové stránky, kde se konkrétní obrázek nachází, ale také ty, které obsahují podobné obrázky. Google ovšem není jediný, kdo dokáže tuto část umělé inteligence úspěšně přeměnit na vyšší konverze.

Co mají Amazon, YouTube, Netflix a AI společného?

Velcí hráči rychle pochopili, jak dokáže umělá inteligence umocnit důležitost personalizovaného obsahu. Díky jejím výstupům dokáží zobrazit určitou úvodní stránku uživateli A a úplně jinou uživateli B. Samozřejmě takovou, aby co nejlépe odpovídala jeho vyhledávacím dotazům.

Například v Alibabě zaznamenali, že personalizované stránky vykazují nárůst konverzní míry až o 20 %. V Amazonu jde o více než třetinu tržeb a v případě Netflixu až o 75 % všech shlédnutí, na jejichž pozadí stojí právě strojové učení. Jak to funguje?

Doporučující systém, který funguje na základě reálných dat

S doporučenými produkty, službami nebo obsahem se dnes setkáme na mnoha stránkách. Webové stránky se však často potýkají s jejich kvalitou, dostupností nebo cenou. Vytvořit si vlastní doporučující systém, který by uživateli zobrazil pravděpodobné výstupy, které ho zajímají, řešili dosud jen velcí e-commerce hráči.

Zlom ale přichází právě s rozvojem strojového učení. Neuronové sítě dokáží zpracovat množství dat, která se na stránce generují. Výsledkem je doporučený obsah (zboží, služba, video, obrázek…), aniž by byl uživatel přihlášen nebo o sobě zadával do systému jakékoli informace. Protože…

Nejsou data jako data. V případě strojového učení hraje kvantita největší roli

Aby vám doporučující systém, sestavený pomocí neuronových vláken, doporučil knihu, kterou byste si pravděpodobně rádi přečetli, nepotřebuje vědět, kdo jste. Dokonce ani jakou literaturu preferujete, jaké knihy jste si naposledy koupili a kdo je váš oblíbený autor. Přesto vám však doporučují relevantní produkt, který vás zaujme.

 

Data tedy hrají důležitou roli i v případě nasazení umělé inteligence. Jsou však anonymní, a to nejdůležitější je jejich množství. Díky němu dokáže systém předpovědět chování návštěvníka webu nezávisle na jeho registraci nebo typu údajů, které v nějakém formuláři poskytl. Pro představu – mluvíme o řádově milionech uživatelských interakcí.

České e-shopy a umělá inteligence

Dosud se mnohé e-commerce projekty spoléhaly na limity doporučujících nástrojů, které byly naprogramovány podle určitých pravidel. Ty však často narážely na momenty, kdy lze jednu věc označit několika odlišnými pojmenováními.

Jen si představte, kolik různých odstínů modré znáte. Zjišťovat a následně přidělit příznak tričku, které by mohlo být tmavomodré, inkoustové, ultramarínové, kobaltové, akvamarínové nebo jednoduše modré, by bylo zřejmě na dlouhé lokty. Čím více možností vzniká, tím menší je pravděpodobnost, že doporučující nástroj zobrazí uživateli relevantní produkty. 

Řešením je doporučující nástroj, který díky informacím o uživatelském chování a jiným relevantním informacím, například o produktech (cena, sleva, kategorie apod.), dokáže vyskládat uživateli nabídku, o kterou má pravděpodobný zájem.

Sdílet článek
Martin Krupa
Co-founder ui42

Martin Krupa založil v roce 1997 webovou agenturu ui42. Zajímá ho především oblast user experience (UX), nebo usability. Propaguje téma použitelnosti webů a aplikací mezi odbornou veřejností, na konferencích i v akademickém světě, vede odborné workshopy.

ui42
Tento článek ti přináší

ui42

ui42 je one-stop shop e-commerce agentura, působící již 26 let na trhu. Pod jednou střechou realizujeme všechny základní oblasti rozvoje online byznysu – od programování webů a webových aplikací, přes user experience a performance marketing až po umělou inteligenci. I díky našim digitálním produktům – BUXUS, Chatbot a Umělá inteligence – pomáháme našim klientům posouvat se neustále vpřed.

Týdenní podcast UPdate
Podobné články
4min. doba čtení

Jak pracovat s inflací v roce 2022 v e-commerce světě?

Rok 2022 přinesl mnoho změn. Firmy čelí nižší poptávce, nejistotě, stagnaci nebo propadům. I když je inflace přirozená, v letošním roce dosáhla 22letého maxima. Zákazníci se rozhodují déle a je stále obtížnější je přesvědčit ke koupi. Zjistěte, jak ustát vlnu inflace a udržet svou značku na očích veřejnosti.

Veronika Svajčiaková Veronika Svajčiaková
Content Specialist v Dexfinity
Přečíst článek
3min. doba čtení

Jak eliminovat nedokončené nákupy?

Kvůli nedokončeným nákupům stojí v opuštěných košících miliony eur. Podle statistik až dvě třetiny zákazníků nedokončí nákup a opustí e-shop těsně před zaplacením. Jaké faktory ovlivňují naše nákupní chování a lze nedokončeným nákupům předcházet?

Naďa Csillagová Naďa Csillagová
Marketing Manager at Besteron
Přečíst článek
7min. doba čtení

Připravte svůj e-shop na hlavní sezónu

Přelom září a října představuje ten nejvyšší čas zhluboka se nadechnout a naplno se vrhnout do top sezóny roku – Black Friday a Vánoc. Přečtěte si rady z obecného pohledu na web, ale také na UX, sociální sítě, PPC a analytiku, abyste z hlavní sezóny vytěžili maximum. 

Martin Krupa Martin Krupa
Co-founder ui42
Přečíst článek